Fundamental_Analysis/backend/app/routers/orgs.py
xucheng edfd51b0a7 feat: 昨日快照API与前端卡片;注册orgs路由;多项优化
- backend(financial): 新增 /china/{ts_code}/snapshot API,返回昨日交易日的收盘价/市值/PE/PB/股息率等

- backend(schemas): 新增 TodaySnapshotResponse

- backend(main): 注册 orgs 路由 /api/v1/orgs

- backend(providers:finnhub): 归一化财报字段并计算 gross_margin/net_margin/ROA/ROE

- backend(providers:tushare): 股东户数报告期与财报期对齐

- backend(routers/financial): years 默认改为 10(最大 10)

- config: analysis-config.json 切换到 qwen-flash-2025-07-28

- frontend(report/[symbol]): 新增“昨日快照”卡片、限制展示期数为10、优化增长与阈值高亮、修正类名与标题处理

- frontend(reports/[id]): 统一 period 变量与计算,修正表格 key

- frontend(hooks): 新增 useChinaSnapshot 钩子与类型

- scripts: dev.sh 增加调试输出
2025-11-05 17:00:32 +08:00

144 lines
5.6 KiB
Python

import logging
import os
import json
from typing import Dict
from fastapi import APIRouter, BackgroundTasks, HTTPException
# Lazy loader for DataManager
_dm = None
def get_dm():
global _dm
if _dm is not None:
return _dm
try:
from app.data_manager import data_manager as real_dm
_dm = real_dm
return _dm
except Exception:
# Return a stub if the real one fails to import
class _StubDM:
async def get_stock_basic(self, stock_code: str): return None
async def get_financial_statements(self, stock_code: str, report_dates): return []
_dm = _StubDM()
return _dm
from app.services.analysis_client import AnalysisClient, load_analysis_config
router = APIRouter()
logger = logging.getLogger(__name__)
# Constants for config paths
REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
BASE_CONFIG_PATH = os.path.join(REPO_ROOT, "config", "config.json")
def _load_json(path: str) -> Dict:
if not os.path.exists(path):
return {}
try:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {}
async def run_full_analysis(org_id: str):
"""
Asynchronous task to run a full analysis for a given stock.
This function is market-agnostic and relies on DataManager.
"""
logger.info(f"Starting full analysis task for {org_id}")
# 1. Load configurations
base_cfg = _load_json(BASE_CONFIG_PATH)
llm_provider = base_cfg.get("llm", {}).get("provider", "gemini")
llm_config = base_cfg.get("llm", {}).get(llm_provider, {})
api_key = llm_config.get("api_key")
base_url = llm_config.get("base_url")
if not api_key:
logger.error(f"API key for {llm_provider} not configured. Aborting analysis for {org_id}.")
return
analysis_config_full = load_analysis_config()
modules_config = analysis_config_full.get("analysis_modules", {})
if not modules_config:
logger.error(f"Analysis modules configuration not found. Aborting analysis for {org_id}.")
return
# 2. Fetch basic company info (name)
try:
basic_data = await get_dm().get_stock_basic(stock_code=org_id)
company_name = basic_data.get("name", org_id) if basic_data else org_id
logger.info(f"Got company name for {org_id}: {company_name}")
except Exception as e:
logger.warning(f"Failed to get company name for {org_id}. Using org_id as name. Error: {e}")
company_name = org_id
# 3. Fetch financial data
financial_data = None
try:
# You might want to make the date range configurable
from datetime import datetime
current_year = datetime.now().year
report_dates = [f"{year}1231" for year in range(current_year - 5, current_year)]
financial_statements = await get_dm().get_financial_statements(stock_code=org_id, report_dates=report_dates)
if financial_statements:
financial_data = {"series": financial_statements}
logger.info(f"Successfully fetched financial statements for {org_id}")
else:
logger.warning(f"Could not fetch financial statements for {org_id}")
except Exception as e:
logger.error(f"Error fetching financial data for {org_id}: {e}")
# 4. Execute analysis modules in order (simplified, assumes no complex dependencies for now)
# Note: A full implementation would need the topological sort from the financial router.
analysis_results = {}
for module_type, module_config in modules_config.items():
logger.info(f"Running analysis module: {module_type} for {org_id}")
client = AnalysisClient(
api_key=api_key,
base_url=base_url,
model=module_config.get("model", "gemini-1.5-flash")
)
# Simplified context: use results from all previously completed modules
context = analysis_results.copy()
result = await client.generate_analysis(
analysis_type=module_type,
company_name=company_name,
ts_code=org_id,
prompt_template=module_config.get("prompt_template", ""),
financial_data=financial_data,
context=context,
)
if result.get("success"):
analysis_results[module_type] = result.get("content", "")
logger.info(f"Module {module_type} for {org_id} completed successfully.")
else:
logger.error(f"Module {module_type} for {org_id} failed: {result.get('error')}")
# Store error message to avoid breaking dependencies that might handle missing data
analysis_results[module_type] = f"Error: Analysis for {module_type} failed."
# 5. Save the final report
# TODO: Implement database logic to save the `analysis_results` to the report record.
logger.info(f"Full analysis for {org_id} finished. Results: {json.dumps(analysis_results, indent=2, ensure_ascii=False)}")
@router.post("/{market}/{org_id}/reports/generate")
async def trigger_report_generation(market: str, org_id: str, background_tasks: BackgroundTasks):
"""
Triggers a background task to generate a full financial report.
This endpoint is now market-agnostic.
"""
logger.info(f"Received report generation request for {org_id} in {market} market.")
# TODO: Create a report record in the database with "generating" status here.
background_tasks.add_task(run_full_analysis, org_id)
logger.info(f"Queued analysis task for {org_id}.")
return {"queued": True, "market": market, "org_id": org_id}