Fundamental_Analysis/archive/python/backend/app/services/analysis_client.py
Lv, Qi a6cca48fed chore(cleanup): remove redundant data-distance-service stub tests
- Covered by data-persistence-service tests (db/api).
- No references or compose entries.
2025-11-16 20:52:26 +08:00

203 lines
7.0 KiB
Python

"""
Generic Analysis Client for various analysis types using an OpenAI-compatible API
"""
import time
import json
import os
from typing import Dict, Optional
import openai
import string
class AnalysisClient:
"""Generic client for generating various types of analysis using an OpenAI-compatible API"""
def __init__(self, api_key: str, base_url: str, model: str):
"""Initialize OpenAI client with API key, base URL, and model"""
# Increase client timeout to allow long-running analysis (5 minutes)
self.client = openai.AsyncOpenAI(api_key=api_key, base_url=base_url, timeout=300.0)
self.model_name = model
async def generate_analysis(
self,
analysis_type: str,
company_name: str,
ts_code: str,
prompt_template: str,
financial_data: Optional[Dict] = None,
context: Optional[Dict] = None
) -> Dict:
"""
Generate analysis using OpenAI-compatible API (non-streaming)
Args:
analysis_type: Type of analysis (e.g., "fundamental_analysis")
company_name: Company name
ts_code: Stock code
prompt_template: Prompt template with placeholders
financial_data: Optional financial data for context
context: Optional dictionary with results from previous analyses
Returns:
Dict with analysis content and metadata
"""
start_time = time.perf_counter_ns()
# Build prompt from template
prompt = self._build_prompt(
prompt_template,
company_name,
ts_code,
financial_data,
context
)
# Call OpenAI-compatible API
try:
response = await self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
timeout=300.0,
)
content = response.choices[0].message.content if response.choices else ""
usage = response.usage
elapsed_ms = int((time.perf_counter_ns() - start_time) / 1_000_000)
return {
"content": content,
"model": self.model_name,
"tokens": {
"prompt_tokens": usage.prompt_tokens if usage else 0,
"completion_tokens": usage.completion_tokens if usage else 0,
"total_tokens": usage.total_tokens if usage else 0,
} if usage else {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0},
"elapsed_ms": elapsed_ms,
"success": True,
"analysis_type": analysis_type,
}
except Exception as e:
elapsed_ms = int((time.perf_counter_ns() - start_time) / 1_000_000)
return {
"content": "",
"model": self.model_name,
"tokens": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0},
"elapsed_ms": elapsed_ms,
"success": False,
"error": str(e),
"analysis_type": analysis_type,
}
def _build_prompt(
self,
prompt_template: str,
company_name: str,
ts_code: str,
financial_data: Optional[Dict] = None,
context: Optional[Dict] = None
) -> str:
"""Build prompt from template by replacing placeholders"""
# Start with base placeholders
placeholders = {
"company_name": company_name,
"ts_code": ts_code,
}
# Add financial data if provided
financial_data_str = ""
if financial_data:
try:
financial_data_str = json.dumps(financial_data, ensure_ascii=False, indent=2)
except Exception:
financial_data_str = str(financial_data)
placeholders["financial_data"] = financial_data_str
# Add context from previous analysis steps
if context:
placeholders.update(context)
# Replace placeholders in template
# Use a custom formatter to handle missing keys gracefully
class SafeFormatter(string.Formatter):
def get_value(self, key, args, kwargs):
if isinstance(key, str):
return kwargs.get(key, f"{{{key}}}")
else:
return super().get_value(key, args, kwargs)
formatter = SafeFormatter()
prompt = formatter.format(prompt_template, **placeholders)
return prompt
async def generate_analysis_stream(
self,
analysis_type: str,
company_name: str,
ts_code: str,
prompt_template: str,
financial_data: Optional[Dict] = None,
context: Optional[Dict] = None
):
"""Yield analysis content chunks using OpenAI-compatible streaming API.
Yields plain text chunks as they arrive.
"""
# Build prompt
prompt = self._build_prompt(
prompt_template,
company_name,
ts_code,
financial_data,
context,
)
try:
stream = await self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
stream=True,
timeout=300.0,
)
# The SDK yields events with incremental deltas
async for event in stream:
try:
choice = event.choices[0] if getattr(event, "choices", None) else None
delta = getattr(choice, "delta", None) if choice is not None else None
content = getattr(delta, "content", None) if delta is not None else None
if content:
yield content
except Exception:
# Best-effort: ignore malformed chunks
continue
except Exception as e:
# Emit error message to the stream so the client can surface it
yield f"\n\n[错误] {type(e).__name__}: {str(e)}\n"
def load_analysis_config() -> Dict:
"""Load analysis configuration from JSON file"""
# Get project root: backend/app/services -> project_root/config/analysis-config.json
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
config_path = os.path.join(project_root, "config", "analysis-config.json")
if not os.path.exists(config_path):
return {}
try:
with open(config_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {}
def get_analysis_config(analysis_type: str) -> Optional[Dict]:
"""Get configuration for a specific analysis type"""
config = load_analysis_config()
modules = config.get("analysis_modules", {})
return modules.get(analysis_type)