- Backend: Introduced new endpoints for LLM configuration retrieval and updates in `config.py`, allowing dynamic management of LLM provider settings. - Updated schemas to include `AlphaEngineConfig` for better integration with the new provider. - Frontend: Added state management for AlphaEngine API credentials in the configuration page, ensuring seamless user experience. - Configuration files updated to reflect changes in LLM provider settings and API keys. BREAKING CHANGE: The default LLM provider has been changed from `new_api` to `alpha_engine`, requiring updates to existing configurations.
261 lines
9.2 KiB
Python
261 lines
9.2 KiB
Python
"""
|
|
AlphaEngine Client for investment Q&A API
|
|
"""
|
|
import json
|
|
import re
|
|
import time
|
|
from typing import Dict, Optional, AsyncGenerator
|
|
import httpx
|
|
from requests.exceptions import ChunkedEncodingError
|
|
|
|
|
|
class AlphaEngineClient:
|
|
"""Client for AlphaEngine investment Q&A API"""
|
|
|
|
def __init__(
|
|
self,
|
|
api_url: str,
|
|
api_key: str,
|
|
token: str,
|
|
user_id: int = 999041,
|
|
model: str = "deepseek-r1",
|
|
using_indicator: bool = True,
|
|
start_time: str = "2024-01-01",
|
|
doc_show_type: list = None,
|
|
simple_tracking: bool = True
|
|
):
|
|
"""
|
|
Initialize AlphaEngine client
|
|
|
|
Args:
|
|
api_url: API endpoint URL
|
|
api_key: X-API-KEY for authentication
|
|
token: Token for authentication
|
|
user_id: User ID
|
|
model: Model name (default: deepseek-r1)
|
|
using_indicator: Whether to use indicators
|
|
start_time: Start time for data query
|
|
doc_show_type: Document types to show (default: ["A001", "A002", "A003", "A004"])
|
|
simple_tracking: Whether to enable simple tracking
|
|
"""
|
|
self.api_url = api_url.rstrip('/')
|
|
self.api_key = api_key
|
|
self.token = token
|
|
self.user_id = user_id
|
|
self.model = model
|
|
self.using_indicator = using_indicator
|
|
self.start_time = start_time
|
|
self.doc_show_type = doc_show_type or ["A001", "A002", "A003", "A004"]
|
|
self.simple_tracking = simple_tracking
|
|
|
|
async def generate_analysis(
|
|
self,
|
|
analysis_type: str,
|
|
company_name: str,
|
|
ts_code: str,
|
|
prompt_template: str,
|
|
financial_data: Optional[Dict] = None,
|
|
context: Optional[Dict] = None
|
|
) -> Dict:
|
|
"""
|
|
Generate analysis using AlphaEngine API (non-streaming)
|
|
|
|
Args:
|
|
analysis_type: Type of analysis
|
|
company_name: Company name
|
|
ts_code: Stock code
|
|
prompt_template: Prompt template with placeholders
|
|
financial_data: Optional financial data for context
|
|
context: Optional dictionary with results from previous analyses
|
|
|
|
Returns:
|
|
Dict with analysis content and metadata
|
|
"""
|
|
start_time = time.perf_counter_ns()
|
|
|
|
# Build prompt from template
|
|
prompt = self._build_prompt(
|
|
prompt_template,
|
|
company_name,
|
|
ts_code,
|
|
financial_data,
|
|
context
|
|
)
|
|
|
|
# Call AlphaEngine API
|
|
try:
|
|
async with httpx.AsyncClient(timeout=300.0) as client:
|
|
headers = {
|
|
'token': self.token,
|
|
'X-API-KEY': self.api_key,
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
payload = {
|
|
"msg": prompt,
|
|
"history": [],
|
|
"user_id": self.user_id,
|
|
"model": self.model,
|
|
"using_indicator": self.using_indicator,
|
|
"start_time": self.start_time,
|
|
"doc_show_type": self.doc_show_type,
|
|
"simple_tracking": self.simple_tracking
|
|
}
|
|
|
|
response = await client.post(
|
|
f"{self.api_url}/api/v3/finchat",
|
|
json=payload,
|
|
headers=headers
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(f"AlphaEngine API error: HTTP {response.status_code} - {response.text}")
|
|
|
|
result_text = response.text
|
|
|
|
# Parse response to extract final answer
|
|
final_answer_match = re.findall(r'\{"id":"_final","content":"(.*?)"}', result_text)
|
|
final_answer = final_answer_match[0] if final_answer_match else result_text
|
|
|
|
# Extract COT if available
|
|
cot_match = re.findall(r'\{"id":"_cot","content":"(.*?)"}', result_text)
|
|
cot = "".join(cot_match) if cot_match else ""
|
|
|
|
# Extract tracking documents if available
|
|
tracking_match = re.findall(r'\{"id":"tracking_documents","content":\s*(\[[^]]*])}', result_text)
|
|
tracking_docs = json.loads(tracking_match[0]) if tracking_match else []
|
|
|
|
elapsed_ms = int((time.perf_counter_ns() - start_time) / 1_000_000)
|
|
|
|
return {
|
|
"content": final_answer,
|
|
"model": self.model,
|
|
"tokens": {
|
|
"prompt_tokens": 0, # AlphaEngine doesn't provide token usage
|
|
"completion_tokens": 0,
|
|
"total_tokens": 0,
|
|
},
|
|
"elapsed_ms": elapsed_ms,
|
|
"success": True,
|
|
"analysis_type": analysis_type,
|
|
"cot": cot,
|
|
"tracking_documents": tracking_docs,
|
|
}
|
|
except Exception as e:
|
|
elapsed_ms = int((time.perf_counter_ns() - start_time) / 1_000_000)
|
|
return {
|
|
"content": "",
|
|
"model": self.model,
|
|
"tokens": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0},
|
|
"elapsed_ms": elapsed_ms,
|
|
"success": False,
|
|
"error": str(e),
|
|
"analysis_type": analysis_type,
|
|
}
|
|
|
|
async def generate_analysis_stream(
|
|
self,
|
|
analysis_type: str,
|
|
company_name: str,
|
|
ts_code: str,
|
|
prompt_template: str,
|
|
financial_data: Optional[Dict] = None,
|
|
context: Optional[Dict] = None
|
|
) -> AsyncGenerator[str, None]:
|
|
"""
|
|
Yield analysis content chunks using AlphaEngine streaming API
|
|
|
|
Yields plain text chunks as they arrive.
|
|
"""
|
|
# Build prompt
|
|
prompt = self._build_prompt(
|
|
prompt_template,
|
|
company_name,
|
|
ts_code,
|
|
financial_data,
|
|
context,
|
|
)
|
|
|
|
try:
|
|
async with httpx.AsyncClient(timeout=300.0) as client:
|
|
headers = {
|
|
'token': self.token,
|
|
'X-API-KEY': self.api_key,
|
|
'Content-Type': 'application/json'
|
|
}
|
|
|
|
payload = {
|
|
"msg": prompt,
|
|
"history": [],
|
|
"user_id": self.user_id,
|
|
"model": self.model,
|
|
"using_indicator": self.using_indicator,
|
|
"start_time": self.start_time,
|
|
"doc_show_type": self.doc_show_type,
|
|
"simple_tracking": self.simple_tracking
|
|
}
|
|
|
|
async with client.stream(
|
|
"POST",
|
|
f"{self.api_url}/api/v3/finchat",
|
|
json=payload,
|
|
headers=headers
|
|
) as response:
|
|
if response.status_code != 200:
|
|
yield f"\n\n[错误] HTTP {response.status_code}: {response.text}\n"
|
|
return
|
|
|
|
async for chunk in response.aiter_bytes(chunk_size=128):
|
|
try:
|
|
chunk_text = chunk.decode('utf-8', 'ignore')
|
|
yield chunk_text
|
|
except UnicodeDecodeError:
|
|
chunk_text = chunk.decode('utf-8', 'replace')
|
|
yield chunk_text
|
|
except Exception as e:
|
|
yield f"\n\n[错误] {type(e).__name__}: {str(e)}\n"
|
|
|
|
def _build_prompt(
|
|
self,
|
|
prompt_template: str,
|
|
company_name: str,
|
|
ts_code: str,
|
|
financial_data: Optional[Dict] = None,
|
|
context: Optional[Dict] = None
|
|
) -> str:
|
|
"""Build prompt from template by replacing placeholders"""
|
|
import string
|
|
|
|
# Start with base placeholders
|
|
placeholders = {
|
|
"company_name": company_name,
|
|
"ts_code": ts_code,
|
|
}
|
|
|
|
# Add financial data if provided
|
|
financial_data_str = ""
|
|
if financial_data:
|
|
try:
|
|
financial_data_str = json.dumps(financial_data, ensure_ascii=False, indent=2)
|
|
except Exception:
|
|
financial_data_str = str(financial_data)
|
|
placeholders["financial_data"] = financial_data_str
|
|
|
|
# Add context from previous analysis steps
|
|
if context:
|
|
placeholders.update(context)
|
|
|
|
# Replace placeholders in template
|
|
class SafeFormatter(string.Formatter):
|
|
def get_value(self, key, args, kwargs):
|
|
if isinstance(key, str):
|
|
return kwargs.get(key, f"{{{key}}}")
|
|
else:
|
|
return super().get_value(key, args, kwargs)
|
|
|
|
formatter = SafeFormatter()
|
|
prompt = formatter.format(prompt_template, **placeholders)
|
|
|
|
return prompt
|
|
|