本次提交引入了一系列重要功能,核心是实现了财务分析模块的动态配置,并对配置和报告页面的用户界面进行了改进。 主要变更: - **动态配置:** - 后端实现了 `ConfigManager` 服务,用于动态管理 `analysis-config.json` 和 `config.json`。 - 添加了用于读取和更新配置的 API 端点。 - 开发了前端 `/config` 页面,允许用户实时查看和修改分析配置。 - **后端增强:** - 更新了 `AnalysisClient` 和 `CompanyProfileClient` 以使用新的配置系统。 - 重构了财务数据相关的路由。 - **前端改进:** - 新增了可复用的 `Checkbox` UI 组件。 - 使用更直观和用户友好的界面重新设计了配置页面。 - 改进了财务报告页面的布局和数据展示。 - **文档与杂务:** - 更新了设计和需求文档以反映新功能。 - 更新了前后端依赖。 - 修改了开发脚本 `dev.sh`。
156 lines
5.3 KiB
Python
156 lines
5.3 KiB
Python
"""
|
|
Generic Analysis Client for various analysis types using an OpenAI-compatible API
|
|
"""
|
|
import time
|
|
import json
|
|
import os
|
|
from typing import Dict, Optional
|
|
import openai
|
|
import string
|
|
|
|
|
|
class AnalysisClient:
|
|
"""Generic client for generating various types of analysis using an OpenAI-compatible API"""
|
|
|
|
def __init__(self, api_key: str, base_url: str, model: str):
|
|
"""Initialize OpenAI client with API key, base URL, and model"""
|
|
self.client = openai.AsyncOpenAI(api_key=api_key, base_url=base_url)
|
|
self.model_name = model
|
|
|
|
async def generate_analysis(
|
|
self,
|
|
analysis_type: str,
|
|
company_name: str,
|
|
ts_code: str,
|
|
prompt_template: str,
|
|
financial_data: Optional[Dict] = None,
|
|
context: Optional[Dict] = None
|
|
) -> Dict:
|
|
"""
|
|
Generate analysis using OpenAI-compatible API (non-streaming)
|
|
|
|
Args:
|
|
analysis_type: Type of analysis (e.g., "fundamental_analysis")
|
|
company_name: Company name
|
|
ts_code: Stock code
|
|
prompt_template: Prompt template with placeholders
|
|
financial_data: Optional financial data for context
|
|
context: Optional dictionary with results from previous analyses
|
|
|
|
Returns:
|
|
Dict with analysis content and metadata
|
|
"""
|
|
start_time = time.perf_counter_ns()
|
|
|
|
# Build prompt from template
|
|
prompt = self._build_prompt(
|
|
prompt_template,
|
|
company_name,
|
|
ts_code,
|
|
financial_data,
|
|
context
|
|
)
|
|
|
|
# Call OpenAI-compatible API
|
|
try:
|
|
response = await self.client.chat.completions.create(
|
|
model=self.model_name,
|
|
messages=[{"role": "user", "content": prompt}],
|
|
)
|
|
|
|
content = response.choices[0].message.content if response.choices else ""
|
|
usage = response.usage
|
|
|
|
elapsed_ms = int((time.perf_counter_ns() - start_time) / 1_000_000)
|
|
|
|
return {
|
|
"content": content,
|
|
"model": self.model_name,
|
|
"tokens": {
|
|
"prompt_tokens": usage.prompt_tokens if usage else 0,
|
|
"completion_tokens": usage.completion_tokens if usage else 0,
|
|
"total_tokens": usage.total_tokens if usage else 0,
|
|
} if usage else {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0},
|
|
"elapsed_ms": elapsed_ms,
|
|
"success": True,
|
|
"analysis_type": analysis_type,
|
|
}
|
|
except Exception as e:
|
|
elapsed_ms = int((time.perf_counter_ns() - start_time) / 1_000_000)
|
|
return {
|
|
"content": "",
|
|
"model": self.model_name,
|
|
"tokens": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0},
|
|
"elapsed_ms": elapsed_ms,
|
|
"success": False,
|
|
"error": str(e),
|
|
"analysis_type": analysis_type,
|
|
}
|
|
|
|
def _build_prompt(
|
|
self,
|
|
prompt_template: str,
|
|
company_name: str,
|
|
ts_code: str,
|
|
financial_data: Optional[Dict] = None,
|
|
context: Optional[Dict] = None
|
|
) -> str:
|
|
"""Build prompt from template by replacing placeholders"""
|
|
|
|
# Start with base placeholders
|
|
placeholders = {
|
|
"company_name": company_name,
|
|
"ts_code": ts_code,
|
|
}
|
|
|
|
# Add financial data if provided
|
|
financial_data_str = ""
|
|
if financial_data:
|
|
try:
|
|
financial_data_str = json.dumps(financial_data, ensure_ascii=False, indent=2)
|
|
except Exception:
|
|
financial_data_str = str(financial_data)
|
|
placeholders["financial_data"] = financial_data_str
|
|
|
|
# Add context from previous analysis steps
|
|
if context:
|
|
placeholders.update(context)
|
|
|
|
# Replace placeholders in template
|
|
# Use a custom formatter to handle missing keys gracefully
|
|
class SafeFormatter(string.Formatter):
|
|
def get_value(self, key, args, kwargs):
|
|
if isinstance(key, str):
|
|
return kwargs.get(key, f"{{{key}}}")
|
|
else:
|
|
return super().get_value(key, args, kwargs)
|
|
|
|
formatter = SafeFormatter()
|
|
prompt = formatter.format(prompt_template, **placeholders)
|
|
|
|
return prompt
|
|
|
|
|
|
def load_analysis_config() -> Dict:
|
|
"""Load analysis configuration from JSON file"""
|
|
# Get project root: backend/app/services -> project_root/config/analysis-config.json
|
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
|
|
config_path = os.path.join(project_root, "config", "analysis-config.json")
|
|
|
|
if not os.path.exists(config_path):
|
|
return {}
|
|
|
|
try:
|
|
with open(config_path, "r", encoding="utf-8") as f:
|
|
return json.load(f)
|
|
except Exception:
|
|
return {}
|
|
|
|
|
|
def get_analysis_config(analysis_type: str) -> Optional[Dict]:
|
|
"""Get configuration for a specific analysis type"""
|
|
config = load_analysis_config()
|
|
modules = config.get("analysis_modules", {})
|
|
return modules.get(analysis_type)
|
|
|