Fundamental_Analysis/backend/app/routers/financial.py

798 lines
31 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
API router for financial data (Tushare for China market)
"""
import json
import os
import time
from datetime import datetime, timezone, timedelta
from typing import Dict, List
from fastapi import APIRouter, HTTPException, Query
from fastapi.responses import StreamingResponse
from app.core.config import settings
from app.schemas.financial import (
BatchFinancialDataResponse,
FinancialConfigResponse,
FinancialMeta,
StepRecord,
CompanyProfileResponse,
AnalysisResponse,
AnalysisConfigResponse
)
from app.services.company_profile_client import CompanyProfileClient
from app.services.analysis_client import AnalysisClient, load_analysis_config, get_analysis_config
from app.services.financial_calculator import calculate_derived_metrics
# Lazy DataManager loader to avoid import-time failures when optional providers/config are missing
_dm = None
def get_dm():
global _dm
if _dm is not None:
return _dm
try:
from app.data_manager import data_manager as real_dm
_dm = real_dm
return _dm
except Exception:
class _StubDM:
config = {}
async def get_stock_basic(self, stock_code: str):
return None
async def get_financial_statements(self, stock_code: str, report_dates):
return []
_dm = _StubDM()
return _dm
router = APIRouter()
# Load metric config from file (project root is repo root, not backend/)
# routers/ -> app/ -> backend/ -> repo root
REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
FINANCIAL_CONFIG_PATH = os.path.join(REPO_ROOT, "config", "financial-tushare.json")
BASE_CONFIG_PATH = os.path.join(REPO_ROOT, "config", "config.json")
ANALYSIS_CONFIG_PATH = os.path.join(REPO_ROOT, "config", "analysis-config.json")
def _load_json(path: str) -> Dict:
if not os.path.exists(path):
return {}
try:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
return {}
@router.get("/data-sources", response_model=Dict[str, List[str]])
async def get_data_sources():
"""
Get the list of data sources that require an API key from the config.
"""
try:
data_sources_config = get_dm().config.get("data_sources", {})
sources_requiring_keys = [
source for source, config in data_sources_config.items()
if config.get("api_key_env")
]
return {"sources": sources_requiring_keys}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to load data sources configuration: {e}")
@router.post("/china/{ts_code}/analysis", response_model=List[AnalysisResponse])
async def generate_full_analysis(
ts_code: str,
company_name: str = Query(None, description="Company name for better context"),
):
"""
Generate a full analysis report by orchestrating multiple analysis modules
based on dependencies defined in the configuration.
"""
import logging
logger = logging.getLogger(__name__)
logger.info(f"[API] Full analysis requested for {ts_code}")
# Load base and analysis configurations
base_cfg = _load_json(BASE_CONFIG_PATH)
llm_provider = base_cfg.get("llm", {}).get("provider", "gemini")
llm_config = base_cfg.get("llm", {}).get(llm_provider, {})
api_key = llm_config.get("api_key")
base_url = llm_config.get("base_url")
if not api_key:
logger.error(f"[API] API key for {llm_provider} not configured")
raise HTTPException(
status_code=500,
detail=f"API key for {llm_provider} not configured."
)
analysis_config_full = load_analysis_config()
modules_config = analysis_config_full.get("analysis_modules", {})
if not modules_config:
raise HTTPException(status_code=404, detail="Analysis modules configuration not found.")
# --- Dependency Resolution (Topological Sort) ---
def topological_sort(graph):
in_degree = {u: 0 for u in graph}
for u in graph:
for v in graph[u]:
in_degree[v] += 1
queue = [u for u in graph if in_degree[u] == 0]
sorted_order = []
while queue:
u = queue.pop(0)
sorted_order.append(u)
for v in graph.get(u, []):
in_degree[v] -= 1
if in_degree[v] == 0:
queue.append(v)
if len(sorted_order) == len(graph):
return sorted_order
else:
# Detect cycles and provide a meaningful error
cycles = []
visited = set()
path = []
def find_cycle_util(node):
visited.add(node)
path.append(node)
for neighbor in graph.get(node, []):
if neighbor in path:
cycle_start_index = path.index(neighbor)
cycles.append(path[cycle_start_index:] + [neighbor])
return
if neighbor not in visited:
find_cycle_util(neighbor)
path.pop()
for node in graph:
if node not in visited:
find_cycle_util(node)
return None, cycles
# Build dependency graph
dependency_graph = {
name: config.get("dependencies", [])
for name, config in modules_config.items()
}
# Invert graph for topological sort (from dependency to dependent)
adj_list = {u: [] for u in dependency_graph}
for u, dependencies in dependency_graph.items():
for dep in dependencies:
if dep in adj_list:
adj_list[dep].append(u)
sorted_modules, cycle = topological_sort(adj_list)
if not sorted_modules:
raise HTTPException(
status_code=400,
detail=f"Circular dependency detected in analysis modules configuration. Cycle: {cycle}"
)
# --- Fetch common data (company name, financial data) ---
# This logic is duplicated, could be refactored into a helper
financial_data = None
if not company_name:
logger.info(f"[API] Fetching company name for {ts_code}")
try:
basic_data = await get_dm().get_stock_basic(stock_code=ts_code)
if basic_data:
company_name = basic_data.get("name", ts_code)
logger.info(f"[API] Got company name: {company_name}")
else:
company_name = ts_code
except Exception as e:
logger.warning(f"Failed to get company name, proceeding with ts_code. Error: {e}")
company_name = ts_code
# --- Execute modules in order ---
analysis_results = []
completed_modules_content = {}
for module_type in sorted_modules:
module_config = modules_config[module_type]
logger.info(f"[Orchestrator] Starting analysis for module: {module_type}")
client = AnalysisClient(
api_key=api_key,
base_url=base_url,
model=module_config.get("model", "gemini-1.5-flash")
)
# Gather context from completed dependencies
context = {
dep: completed_modules_content.get(dep, "")
for dep in module_config.get("dependencies", [])
}
result = await client.generate_analysis(
analysis_type=module_type,
company_name=company_name,
ts_code=ts_code,
prompt_template=module_config.get("prompt_template", ""),
financial_data=financial_data,
context=context,
)
response = AnalysisResponse(
ts_code=ts_code,
company_name=company_name,
analysis_type=module_type,
content=result.get("content", ""),
model=result.get("model", module_config.get("model")),
tokens=result.get("tokens", {}),
elapsed_ms=result.get("elapsed_ms", 0),
success=result.get("success", False),
error=result.get("error")
)
analysis_results.append(response)
if response.success:
completed_modules_content[module_type] = response.content
else:
# If a module fails, subsequent dependent modules will get an empty string for its context.
# This prevents total failure but may affect quality.
completed_modules_content[module_type] = f"Error: Analysis for {module_type} failed."
logger.error(f"[Orchestrator] Module {module_type} failed: {response.error}")
logger.info(f"[API] Full analysis for {ts_code} completed.")
return analysis_results
@router.get("/config", response_model=FinancialConfigResponse)
async def get_financial_config():
data = _load_json(FINANCIAL_CONFIG_PATH)
api_groups = data.get("api_groups", {})
return FinancialConfigResponse(api_groups=api_groups)
@router.get("/china/{ts_code}", response_model=BatchFinancialDataResponse)
async def get_china_financials(
ts_code: str,
years: int = Query(5, ge=1, le=15),
):
# Load metric config
fin_cfg = _load_json(FINANCIAL_CONFIG_PATH)
api_groups: Dict[str, List[Dict]] = fin_cfg.get("api_groups", {})
# Meta tracking
started_real = datetime.now(timezone.utc)
started = time.perf_counter_ns()
api_calls_total = 0 # This will be harder to track now, maybe DataManager should provide it
api_calls_by_group: Dict[str, int] = {}
steps: List[StepRecord] = []
# Get company name
company_name = ts_code
try:
basic_data = await get_dm().get_stock_basic(stock_code=ts_code)
if basic_data:
company_name = basic_data.get("name", ts_code)
except Exception:
pass # Continue without it
# Collect series per metric key
series: Dict[str, List[Dict]] = {}
errors: Dict[str, str] = {}
# Generate date range for financial statements
current_year = datetime.now().year
report_dates = [f"{year}1231" for year in range(current_year - years, current_year + 1)]
# Fetch all financial statements at once
step_financials = StepRecord(name="拉取财务报表", start_ts=started_real.isoformat(), status="running")
steps.append(step_financials)
# Fetch all financial statements at once (already in series format from provider)
series = await get_dm().get_financial_statements(stock_code=ts_code, report_dates=report_dates)
if not series:
errors["financial_statements"] = "Failed to fetch from all providers."
step_financials.status = "done"
step_financials.end_ts = datetime.now(timezone.utc).isoformat()
step_financials.duration_ms = int((time.perf_counter_ns() - started) / 1_000_000)
# --- 拉取市值/估值daily_basic与股价daily按年度末日期 ---
try:
# 仅当配置包含相应分组时再尝试拉取
has_daily_basic = bool(api_groups.get("daily_basic"))
has_daily = bool(api_groups.get("daily"))
if has_daily_basic or has_daily:
step_market = StepRecord(name="拉取市值与股价", start_ts=datetime.now(timezone.utc).isoformat(), status="running")
steps.append(step_market)
try:
if has_daily_basic:
db_rows = await get_dm().get_data('get_daily_basic_points', stock_code=ts_code, trade_dates=report_dates)
if isinstance(db_rows, list):
for row in db_rows:
trade_date = row.get('trade_date') or row.get('trade_dt') or row.get('date')
if not trade_date:
continue
year = str(trade_date)[:4]
for key, value in row.items():
if key in ['ts_code', 'trade_date', 'trade_dt', 'date']:
continue
if isinstance(value, (int, float)) and value is not None:
if key not in series:
series[key] = []
if not any(d['year'] == year for d in series[key]):
series[key].append({"year": year, "value": value})
if has_daily:
d_rows = await get_dm().get_data('get_daily_points', stock_code=ts_code, trade_dates=report_dates)
if isinstance(d_rows, list):
for row in d_rows:
trade_date = row.get('trade_date') or row.get('trade_dt') or row.get('date')
if not trade_date:
continue
year = str(trade_date)[:4]
for key, value in row.items():
if key in ['ts_code', 'trade_date', 'trade_dt', 'date']:
continue
if isinstance(value, (int, float)) and value is not None:
if key not in series:
series[key] = []
if not any(d['year'] == year for d in series[key]):
series[key].append({"year": year, "value": value})
except Exception as e:
errors["market_data"] = f"Failed to fetch market data: {e}"
finally:
step_market.status = "done"
step_market.end_ts = datetime.now(timezone.utc).isoformat()
step_market.duration_ms = int((time.perf_counter_ns() - started) / 1_000_000)
except Exception as e:
errors["market_data_init"] = f"Market data init failed: {e}"
finished_real = datetime.now(timezone.utc)
elapsed_ms = int((time.perf_counter_ns() - started) / 1_000_000)
if not series:
raise HTTPException(status_code=502, detail={"message": "No data returned from any data source", "errors": errors})
# Truncate years and sort (the data should already be mostly correct, but we ensure)
for key, arr in series.items():
# Deduplicate and sort desc by year, then cut to requested years, and return asc
uniq = {item["year"]: item for item in arr}
arr_sorted_desc = sorted(uniq.values(), key=lambda x: x["year"], reverse=True)
arr_limited = arr_sorted_desc[:years]
arr_sorted = sorted(arr_limited, key=lambda x: x["year"])
series[key] = arr_sorted
# Calculate derived financial metrics
series = calculate_derived_metrics(series, years_list)
meta = FinancialMeta(
started_at=started_real.isoformat(),
finished_at=finished_real.isoformat(),
elapsed_ms=elapsed_ms,
api_calls_total=api_calls_total,
api_calls_by_group=api_calls_by_group,
current_action=None,
steps=steps,
)
return BatchFinancialDataResponse(ts_code=ts_code, name=company_name, series=series, meta=meta)
@router.get("/china/{ts_code}/company-profile", response_model=CompanyProfileResponse)
async def get_company_profile(
ts_code: str,
company_name: str = Query(None, description="Company name for better context"),
):
"""
Get company profile for a company using Gemini AI (non-streaming, single response)
"""
import logging
logger = logging.getLogger(__name__)
logger.info(f"[API] Company profile requested for {ts_code}")
# Load config
base_cfg = _load_json(BASE_CONFIG_PATH)
llm_provider = base_cfg.get("llm", {}).get("provider", "gemini")
llm_config = base_cfg.get("llm", {}).get(llm_provider, {})
api_key = llm_config.get("api_key")
base_url = llm_config.get("base_url") # Will be None if not set, handled by client
if not api_key:
logger.error(f"[API] API key for {llm_provider} not configured")
raise HTTPException(
status_code=500,
detail=f"API key for {llm_provider} not configured."
)
client = CompanyProfileClient(
api_key=api_key,
base_url=base_url,
model="gemini-1.5-flash"
)
# Get company name from ts_code if not provided
if not company_name:
logger.info(f"[API] Fetching company name for {ts_code}")
# Try to get from stock_basic API
try:
basic_data = await get_dm().get_stock_basic(stock_code=ts_code)
if basic_data:
company_name = basic_data.get("name", ts_code)
logger.info(f"[API] Got company name: {company_name}")
else:
company_name = ts_code
except Exception as e:
logger.warning(f"[API] Failed to get company name: {e}")
company_name = ts_code
logger.info(f"[API] Generating profile for {company_name}")
# Generate profile using non-streaming API
result = await client.generate_profile(
company_name=company_name,
ts_code=ts_code,
financial_data=None
)
logger.info(f"[API] Profile generation completed, success={result.get('success')}")
return CompanyProfileResponse(
ts_code=ts_code,
company_name=company_name,
content=result.get("content", ""),
model=result.get("model", "gemini-2.5-flash"),
tokens=result.get("tokens", {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}),
elapsed_ms=result.get("elapsed_ms", 0),
success=result.get("success", False),
error=result.get("error")
)
@router.get("/analysis-config", response_model=AnalysisConfigResponse)
async def get_analysis_config_endpoint():
"""Get analysis configuration"""
config = load_analysis_config()
return AnalysisConfigResponse(analysis_modules=config.get("analysis_modules", {}))
@router.put("/analysis-config", response_model=AnalysisConfigResponse)
async def update_analysis_config_endpoint(analysis_config: AnalysisConfigResponse):
"""Update analysis configuration"""
import logging
logger = logging.getLogger(__name__)
try:
# 保存到文件
config_data = {
"analysis_modules": analysis_config.analysis_modules
}
with open(ANALYSIS_CONFIG_PATH, "w", encoding="utf-8") as f:
json.dump(config_data, f, ensure_ascii=False, indent=2)
logger.info(f"[API] Analysis config updated successfully")
return AnalysisConfigResponse(analysis_modules=analysis_config.analysis_modules)
except Exception as e:
logger.error(f"[API] Failed to update analysis config: {e}")
raise HTTPException(
status_code=500,
detail=f"Failed to update analysis config: {str(e)}"
)
@router.get("/china/{ts_code}/analysis/{analysis_type}", response_model=AnalysisResponse)
async def generate_analysis(
ts_code: str,
analysis_type: str,
company_name: str = Query(None, description="Company name for better context"),
):
"""
Generate analysis for a company using Gemini AI
Supported analysis types:
- fundamental_analysis (基本面分析)
- bull_case (看涨分析)
- bear_case (看跌分析)
- market_analysis (市场分析)
- news_analysis (新闻分析)
- trading_analysis (交易分析)
- insider_institutional (内部人与机构动向分析)
- final_conclusion (最终结论)
"""
import logging
logger = logging.getLogger(__name__)
logger.info(f"[API] Analysis requested for {ts_code}, type: {analysis_type}")
# Load config
base_cfg = _load_json(BASE_CONFIG_PATH)
llm_provider = base_cfg.get("llm", {}).get("provider", "gemini")
llm_config = base_cfg.get("llm", {}).get(llm_provider, {})
api_key = llm_config.get("api_key")
base_url = llm_config.get("base_url")
if not api_key:
logger.error(f"[API] API key for {llm_provider} not configured")
raise HTTPException(
status_code=500,
detail=f"API key for {llm_provider} not configured."
)
# Get analysis configuration
analysis_cfg = get_analysis_config(analysis_type)
if not analysis_cfg:
raise HTTPException(
status_code=404,
detail=f"Analysis type '{analysis_type}' not found in configuration"
)
model = analysis_cfg.get("model", "gemini-2.5-flash")
prompt_template = analysis_cfg.get("prompt_template", "")
if not prompt_template:
raise HTTPException(
status_code=500,
detail=f"Prompt template not found for analysis type '{analysis_type}'"
)
# Get company name from ts_code if not provided
financial_data = None
if not company_name:
logger.info(f"[API] Fetching company name and financial data for {ts_code}")
try:
basic_data = await get_dm().get_stock_basic(stock_code=ts_code)
if basic_data:
company_name = basic_data.get("name", ts_code)
logger.info(f"[API] Got company name: {company_name}")
# Try to get financial data for context
try:
# A simplified approach to get a single financial report
current_year = datetime.now().year
report_dates = [f"{current_year-1}1231"] # Get last year's report
# Use get_financial_statement which is designed to return a single flat report
latest_financials_report = await get_dm().get_financial_statement(
stock_code=ts_code,
report_dates=report_dates[0]
)
if latest_financials_report:
financial_data = {"series": latest_financials_report}
except Exception as e:
logger.warning(f"[API] Failed to get financial data: {e}")
financial_data = None
else:
company_name = ts_code
except Exception as e:
logger.warning(f"[API] Failed to get company name: {e}")
company_name = ts_code
logger.info(f"[API] Generating {analysis_type} for {company_name}")
# Initialize analysis client with configured model
client = AnalysisClient(api_key=api_key, base_url=base_url, model=model)
# Prepare dependency context for single-module generation
# If the requested module declares dependencies, generate them first and inject their outputs
context = {}
try:
dependencies = analysis_cfg.get("dependencies", []) or []
if dependencies:
# Load full modules config to resolve dependency graph
analysis_config_full = load_analysis_config()
modules_config = analysis_config_full.get("analysis_modules", {})
# Collect all transitive dependencies
all_required = set()
def collect_all_deps(mod_name: str):
for dep in modules_config.get(mod_name, {}).get("dependencies", []) or []:
if dep not in all_required:
all_required.add(dep)
collect_all_deps(dep)
for dep in dependencies:
all_required.add(dep)
collect_all_deps(dep)
# Build subgraph and topologically sort
graph = {name: [d for d in (modules_config.get(name, {}).get("dependencies", []) or []) if d in all_required] for name in all_required}
in_degree = {u: 0 for u in graph}
for u, deps in graph.items():
for v in deps:
in_degree[v] += 1
queue = [u for u, deg in in_degree.items() if deg == 0]
order = []
while queue:
u = queue.pop(0)
order.append(u)
for v in graph.get(u, []):
in_degree[v] -= 1
if in_degree[v] == 0:
queue.append(v)
if len(order) != len(graph):
# Fallback: if cycle detected, just use any order
order = list(all_required)
# Generate dependencies in order
completed = {}
for mod in order:
cfg = modules_config.get(mod, {})
dep_ctx = {d: completed.get(d, "") for d in (cfg.get("dependencies", []) or [])}
dep_client = AnalysisClient(api_key=api_key, base_url=base_url, model=cfg.get("model", model))
dep_result = await dep_client.generate_analysis(
analysis_type=mod,
company_name=company_name,
ts_code=ts_code,
prompt_template=cfg.get("prompt_template", ""),
financial_data=financial_data,
context=dep_ctx,
)
completed[mod] = dep_result.get("content", "") if dep_result.get("success") else ""
context = {dep: completed.get(dep, "") for dep in dependencies}
except Exception:
# Best-effort context; if anything goes wrong, continue without it
context = {}
# Generate analysis
result = await client.generate_analysis(
analysis_type=analysis_type,
company_name=company_name,
ts_code=ts_code,
prompt_template=prompt_template,
financial_data=financial_data,
context=context,
)
logger.info(f"[API] Analysis generation completed, success={result.get('success')}")
return AnalysisResponse(
ts_code=ts_code,
company_name=company_name,
analysis_type=analysis_type,
content=result.get("content", ""),
model=result.get("model", model),
tokens=result.get("tokens", {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}),
elapsed_ms=result.get("elapsed_ms", 0),
success=result.get("success", False),
error=result.get("error")
)
@router.get("/china/{ts_code}/analysis/{analysis_type}/stream")
async def stream_analysis(
ts_code: str,
analysis_type: str,
company_name: str = Query(None, description="Company name for better context"),
):
"""
Stream analysis content chunks for a given module using OpenAI-compatible streaming.
Plain text streaming (text/plain; utf-8). Dependencies are resolved first (non-stream),
then the target module content is streamed.
"""
import logging
logger = logging.getLogger(__name__)
logger.info(f"[API] Streaming analysis requested for {ts_code}, type: {analysis_type}")
# Load config
base_cfg = _load_json(BASE_CONFIG_PATH)
llm_provider = base_cfg.get("llm", {}).get("provider", "gemini")
llm_config = base_cfg.get("llm", {}).get(llm_provider, {})
api_key = llm_config.get("api_key")
base_url = llm_config.get("base_url")
if not api_key:
logger.error(f"[API] API key for {llm_provider} not configured")
raise HTTPException(status_code=500, detail=f"API key for {llm_provider} not configured.")
# Get analysis configuration
analysis_cfg = get_analysis_config(analysis_type)
if not analysis_cfg:
raise HTTPException(status_code=404, detail=f"Analysis type '{analysis_type}' not found in configuration")
model = analysis_cfg.get("model", "gemini-2.5-flash")
prompt_template = analysis_cfg.get("prompt_template", "")
if not prompt_template:
raise HTTPException(status_code=500, detail=f"Prompt template not found for analysis type '{analysis_type}'")
# Get company name from ts_code if not provided; we don't need full financials here
financial_data = None
if not company_name:
try:
basic_data = await get_dm().get_stock_basic(stock_code=ts_code)
if basic_data:
company_name = basic_data.get("name", ts_code)
else:
company_name = ts_code
except Exception:
company_name = ts_code
# Resolve dependency context (non-streaming)
context = {}
try:
dependencies = analysis_cfg.get("dependencies", []) or []
if dependencies:
analysis_config_full = load_analysis_config()
modules_config = analysis_config_full.get("analysis_modules", {})
all_required = set()
def collect_all(mod_name: str):
for dep in modules_config.get(mod_name, {}).get("dependencies", []) or []:
if dep not in all_required:
all_required.add(dep)
collect_all(dep)
for dep in dependencies:
all_required.add(dep)
collect_all(dep)
graph = {name: [d for d in (modules_config.get(name, {}).get("dependencies", []) or []) if d in all_required] for name in all_required}
in_degree = {u: 0 for u in graph}
for u, deps in graph.items():
for v in deps:
in_degree[v] += 1
queue = [u for u, deg in in_degree.items() if deg == 0]
order = []
while queue:
u = queue.pop(0)
order.append(u)
for v in graph.get(u, []):
in_degree[v] -= 1
if in_degree[v] == 0:
queue.append(v)
if len(order) != len(graph):
order = list(all_required)
completed = {}
for mod in order:
cfg = modules_config.get(mod, {})
dep_ctx = {d: completed.get(d, "") for d in (cfg.get("dependencies", []) or [])}
dep_client = AnalysisClient(api_key=api_key, base_url=base_url, model=cfg.get("model", model))
dep_result = await dep_client.generate_analysis(
analysis_type=mod,
company_name=company_name,
ts_code=ts_code,
prompt_template=cfg.get("prompt_template", ""),
financial_data=financial_data,
context=dep_ctx,
)
completed[mod] = dep_result.get("content", "") if dep_result.get("success") else ""
context = {dep: completed.get(dep, "") for dep in dependencies}
except Exception:
context = {}
client = AnalysisClient(api_key=api_key, base_url=base_url, model=model)
async def streamer():
# Optional header line to help client-side UI
header = f"# {analysis_cfg.get('name', analysis_type)}\n\n"
yield header
async for chunk in client.generate_analysis_stream(
analysis_type=analysis_type,
company_name=company_name,
ts_code=ts_code,
prompt_template=prompt_template,
financial_data=financial_data,
context=context,
):
yield chunk
headers = {
# 禁止中间层缓冲,确保尽快把分块推送给客户端
"Cache-Control": "no-cache, no-transform",
"X-Accel-Buffering": "no",
}
return StreamingResponse(streamer(), media_type="text/plain; charset=utf-8", headers=headers)